UNIVERSITY OF BELGRADE TECHNICAL FACULTY IN BOR

BOOK OF ABSTRACTS

8th INTERNATIONAL STUDENT CONFERENCE ON TECHNICAL SCIENCES

WWW.tfbor.bg.ac.rs

8th INTERNATIONAL STUDENT CONFERENCE on Technical Sciences

20-21 October, Bor Lake, Serbia

Editor: Uroš Stamenković

Book of Abstracts, 8th International Student Conference on Technical Sciences ISC 2023

Editor: Doc. dr Uroš Stamenković University of Belgrade - Technical Faculty in Bor

Technical Editors: Milan Nedeljković, dipl. ing. Avram Kovačević, dipl. ing. University of Belgrade - Technical Faculty in Bor

Publisher: University of Belgrade - Technical Faculty in Bor For the publisher: Dean, Prof. dr Dejan Tanikić Circulation: 50 copies Year of publication: 2023

Printed by "GRAFIKA GALEB DOO" NIŠ, 2023

ISBN 978-86-6305-141-6

СІР - Каталогизација у публикацији Народна библиотека Србије, Београд

622(048) 669(048) 66(048) 66.017/.018(048)

INTERNATIONAL Student Conference on Technical Sciences (8; 2023; Borsko jezero)

Book of abstracts / 8th International Student Conference on Technical Sciences ISC 2023, 20-21 October, Bor Lake, Serbia ; [organized by University of Belgrade, Technical Faculty in Bor] ; editor Uroš Stamenković. - Bor : University of Belgrade, Technical Faculty, 2023 (Niš : Grafika Galeb). - VII, 51 str. ; 24 cm

Tiraž 50. - Bibliografija uz većinu apstrakata.

ISBN 978-86-6305-141-6

а) Рударство -- Апстракти b) Металургија -- Апстракти v) Хемијска технологија -- Апстракти g) Технички материјали -- Апстракти

COBISS.SR-ID 126594825

8th INTERNATIONAL STUDENT CONFERENCE ON TECHNICAL SCIENCES

October 20th - 21st, 2023, Bor lake in Bor (Serbia) www.tfbor.bg.ac.rs https://ioc.tfbor.bg.ac.rs/isc2023/

8th International Student Conference on Technical Science, ISC 2023.

Is organized by

UNIVERSITY OF BELGRADE, TECHNICAL FACULTY IN BOR

and co-organized by

University of Zenica, Faculty of engineering and natural sciences, Zenica, Bosnia and Herzegovina

University in Priština, Faculty of Technical Science, Kosovska Mitrovica, Serbia;

University of Montenegro, Faculty of Metallurgy and Technology, Podgorica, Montenegro;

University of Tuzla, Faculty of Technology, Tuzla, Bosnia and Herzegovina;

University of Chemical Technology and Metallurgy, Faculty of Metallurgy and Material Science, Sofia, Bulgaria;

8th INTERNATIONAL STUDENT CONFERENCE ON TECHNICAL SCIENCES

October 20th – 21st, 2023, Bor lake in Bor (Serbia) www.tfbor.bg.ac.rs https://ioc.tfbor.bg.ac.rs/isc2023/

29.	Student: Avram Kovačević; Mentor: Uroš Stamenković (Serbia)	
	COMPARATIVE ANALYSIS OF TENSILE STRENGTH IN EN-AW 7075 ALUMINUM	42
	ALLOY: EMPIRICAL VS. THEORETICAL ASSESSMENT	
30.	Student: Miljan Pankalujić; Mentor: Ivana Marković (Serbia)	
	PROPERTIES OF SOME COINS IN CIRCULATION FROM SERBIA	43
31.	Student: Nemanja Marić; Mentor: Ivana Marković (Serbia)	
	STUDY OF ISOTHERMAL AGEING IN Cu-Al-Ni-Fe ALLOY	44
32.	Student: Olivera Dragutinović; Mentors: Đorđe Veljović, Vaso Manojlović (Serbia)	
	INVESTIGATION OF THE EFFECTS OF Ca/P RATIO AND DIFFERENT	45
	POLYMER-BASED COATINGS ON THE PROPERTIES OF MACROPOROUS	
	CALCIUM PHOSPHATE MATERIALS	
33.	Student: Ognjen Stanković; Mentors: Milovan Stanković, Mirjana Filipović, Vaso	
	Manojlović (Serbia)	
	THE FAVORABLE INFLUENCE OF Ni ON THE REDUCTION OF SEGREGATIONS	47
	DURING SOLIDIFICATION OF LEAD-TIN BRONZES CuSn10Pb10	
34.	Student: Aleksandar Nikolajević; Mentor: Ljubiša Balanović (Serbia)	
	CHARACTERIZATION OF COPPER ALLOYS MANUFACTURED IN SEVOJNO	48
	COPPER MILL	
35.	Student: Nemanja Prvulović; Mentor: Ana Radojević (Serbia)	
	RECYCLING OF END-OF-LIFE VEHICLES	49
36.	Student: Dalibor Jovanović; Mentor: Milan Gorgievski (Serbia)	
	REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTIONS USING HAZELNUT	50
	SHELLS AS AN ADSORBENT	

8th INTERNATIONAL STUDENT CONFERENCE ON TECHNICAL SCIENCES

October 20th - 21st, 2023, Bor lake in Bor (Serbia) www.tfbor.bg.ac.rs https://ioc.tfbor.bg.ac.rs/isc2023/

THE FAVORABLE INFLUENCE OF Ni ON THE REDUCTION OF SEGREGATIONS DURING SOLIDIFICATION OF LEAD-TIN BRONZES CuSn10Pb10

Student: Ognjen Stanković

Mentors: M.Sc. Milovan Stanković, Prof. dr. Mirjana Filipović, Prof. dr Vaso Manojlović

University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Abstract

Alloys from the group of lead-tin bronzes (CuSn10Pb10) are most often used for the production of sliding bearings with significantly improved sliding (anti-friction) characteristics in difficult lubrication conditions in the exploitation process itself.

These bronzes are characterized by pronounced inhomogeneity caused, on the one hand, by the decrease in the solubility of lead in a solid copper solution with a decrease in temperature, and on the other, by the difference in density. The aim of this work is to examine the impact of nickel on the reduction of segregation, i.e. the distribution of lead, which has the greatest influence on inhomogeneity in the process of solidification of the mentioned alloys throughout the entire volume.

Three alloys with different nickel content were tested: 0%, 0.48%, 2.12%. Alloys are melted in a pot flame furnace with a blue flame at the furnace mouth in a slightly oxidizing atmosphere. The melting temperature was 1135 0C. Sliding bearings were gravity casted in molds made from a molding mixture of bentonite and silicon dioxide. A scanning electron microscope was used for microstructural tests. Test samples of identical shape and size were taken from the same casting zones. The problem that caused the inhomogeneity is primarily the decrease in the solubility of lead in copper during the solidification of the alloy. Namely, the solubility of lead in copper at a temperature above 1083 °C is 38%, while at room temperature it is 0.002%. Additional inhomogeneity is caused by the difference in the density of the base and alloy elements, which causes gravitational segregation. The basic characteristic of nickel as an alloying element in copper alloys is that it creates a dendritic microstructure during the crystallization process. The addition of nickel to lead-tin bronze alloys affects the even distribution of lead in the interdendritic space throughout the entire volume of the casting. In this way, a uniform distribution of lead is obtained, which has the basic function of improving the sliding properties of these alloys, and thus the uniformity of the sliding properties and mechanical characteristics of the sliding bearing is obtained.

www.tfbor.bg.ac.rs

20-21 October, Bor Lake, Serbia

ISBN 978-86-6305-141-6